Simulation in Healthcare: Improving Patient Outcomes

Ellen L. Belknap, AIA - President
SMRT - Architects & Engineers

Craig Piper, AIA – Operations Leader
SMRT – Architects & Engineers

Simulation In Healthcare, Improving Patient Outcomes

Today’s Presenters:

Ellen L. Belknap, AIA
President, SMRT Architecture Engineering Planning
Healthcare Architect and Planner
Focus on using design to improve patient care

Craig D. Piper, AIA
Principal, SMRT Architecture Engineering
SMRT Director of Operations
Principal Architect for Hannaford Center for Safety, Innovation and Simulation
Simulation In Healthcare, Improving Patient Outcomes

– Introduction and Purpose
– Simulation Enhanced Education is Here to Stay
– The Case for Simulation
 • Why is it important?
 • What makes learning stick?
 • Learner satisfaction
 • The data
– Case Study
 • Hannaford Center for Safety, Innovation and Simulation
– Planning a Sim Center?
 • Top 10 Questions
– Questions and Answers
Simulation In Healthcare, Improving Patient Outcomes

Simulation enhanced education is here to stay

Why is simulation needed?
- Improve Patient Safety
- Enhance Medical Education
- Improve Patient Outcomes

When is simulation needed?
- Technically complex systems and equipment
- No margin for error
- Extreme time pressures
- Team interactions critical to success

Simulation In Healthcare, Improving Patient Outcomes

Simulation enhanced education is here to stay:
- Safety
- Innovation
- Technical Skills
- Team Effectiveness
- Recruitment and Retention
- Maintenance and Certification
- Clinical Excellence
Simulation In Healthcare, Improving Patient Outcomes

CASE STUDY
Hannaford Center for Safety, Innovation & Simulation:

Planning and Design Phase

- Establish Core Design Group:
 - Key Participants Early
- Site Visits to completed similar facilities
- Program Development & Conceptual Planning
- Equipment and Technology
- Estimating/Pricing:
 - Construction Team integral part of process
- Mockups

Hannaford Center for Safety, Innovation & Simulation:

Design Phase

- Establish Core Design Group:
 - Key Participants Early
- Site Visits to completed similar facilities
- Program Development & Conceptual Planning
- Equipment and Technology
- Estimating/Pricing:
 - Construction Team integral part of process
- Mockups
Hannaford Center for Safety, Innovation & Simulation:

Program Total 21,250 SF:

Lobby/ Office of Medical Education:
7,500 SF
• Reception
• Offices
• Conference and Meeting Rooms

Standardized Patient:
4,750 SF
• Exam Rooms and Patient Room
• Control Room
• Standardized patient prep/waiting

Simulation Lab and Skills Lab:
9,000 SF
• Simulation Lab:
 Operating Room: Replica of newly constructed Surgery Center room.
 Trauma Bay: Shared Trauma/Critical Care Room
 Medical/Surgical Patient Room
• Control Rooms
• Debrief Rooms
• Storage
• Skills Lab:
 General Skills Lab
 Surgical Skills Lab

Existing Building Constraints
• Variety of construction both additions and renovations from the late 1950’s to 2000’s.
• Construction types: Combination of steel frames and masonry bearing construction.
• Multi-Level: Minor Ramps
• Occupied spaces below: Inpatient Rehab unit
• Remote from Hospital

Existing Building Opportunities
• Hospital Infrastructure in place
• Existing OR’s
• Vacant: Ability to review existing conditions
• Knowledgeable Facilities Department
Hannaford Center for Safety, Innovation & Simulation:

Lobby
- Set the stage:
- Wayfinding
- Recruiting

Before

Hannaford Center for Safety, Innovation & Simulation:

Design Principles:
- Technology
- Human Elements
- Medical Education, Science, Biology, Chemistry, History of Medicine
- Create an educational space within a realistic clinical setting
Hannaford Center for Safety, Innovation & Simulation:

Design Features: Technology
• Video connection to simulation rooms
• AV/IT Team integration essential:
 • Cameras throughout facility: Hand washing sinks, Classrooms, Task Trainers
• Internet streaming
• Kiosk check-in

Hannaford Center for Safety, Innovation & Simulation:

Design Features:
• Cells, Veins, Bones
• Light Box, Transparency of the body
Hannaford Center for Safety, Innovation & Simulation:

Design Features:
- History of Medical Education and Training
- Signage
- Art

Hannaford Center for Safety, Innovation & Simulation:
Hannaford Center for Safety, Innovation & Simulation:

Simulation and Skills Lab
- Storage
- Flexible Spaces
- Equipment sizes constantly changing
- Medical Gases are Real
- Sound Control

Operating Room:
- Designed to replicate an actual OR in MMC System
- Ability to control lighting, power, medical gases and line isolation monitor from dedicated control room
- Viewing capabilities – A/V feeds, viewing window 2 way mirror from corridor
Hannaford Center for Safety, Innovation & Simulation:

Trauma / Critical Care and Medical / Surgical Patient Room

- Combined Trauma/CCU: Versatile, all systems installed separately for each setup.
- These rooms are equipped and furnished as MMC’s actual clinical settings.
- Lights, Booms, Anesthesia equipment are all the latest models for students to learn.

Skills and Surgical Skills Lab:

- Flexibility: Variety of trainers
- Staging area for trauma situation
- Integrated A/V System so that it can be used for a classroom
- View and record tests or scenarios
- Space is available 24 hours
Hannaford Center for Safety, Innovation & Simulation:

Conference / Debrief Rooms / Classroom:

- **Dividable**: Utilize simulators in classroom for group demonstrations
- **Control AV Rooms**: Multiply control from podiums, control rooms or debrief rooms
- **Debrief Rooms**: Fully connected for viewing or playback of simulations during and after scenarios.
Hannaford Center for Safety, Innovation & Simulation:

Standardized Patient: Simulate interaction between health professional and patients. Patients hired to act out physically and emotionally various conditions.

• 10 exam rooms.
• Workstation outside exam for students to receive instructions and log observations
• 1 inpatient room
• Control Room: Observe and facilitate simulations
• Flow of students and patients extremely important, avoid interaction before and after
Simulation In Healthcare, Improving Patient Outcomes

TOP 10 QUESTIONS
Simulation In Healthcare, Improving Patient Outcomes

Question #10 – What is the purpose of Simulation Center?
Question #9 – Who should be involved with the planning and construction?
Question #8 – Where will the center be located?
Question #7 – What are the current trends?
Question #6 – Are there best practice models?
Question #5 – What level of fidelity?
Question #4 – What will it cost?
Question #3 – When scope and budget don’t align, how do you prioritize?
Question #2 – What would you do differently?
Question #1 – What are the politics?

Question #10

What is the Purpose of Simulation Center?
Define Objectives and Business Plan- The Why
1. Teachers and Learners: Who are They?
2. Curriculum Development and Staffing Plan
3. Hours of Operation
4. Staffing Assumptions
Question # 9
Who should be involved with the planning and construction?

<table>
<thead>
<tr>
<th>Administration</th>
<th>Construction Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Staff</td>
<td>Purchasing</td>
</tr>
<tr>
<td>Simulation Center Staff</td>
<td>IT Department</td>
</tr>
<tr>
<td>User Groups</td>
<td>Clinical Engineering</td>
</tr>
<tr>
<td>Architects, Engineers, Designers</td>
<td>Philanthropy</td>
</tr>
</tbody>
</table>

Question # 8
Where will the center be located?

- New or Renovated Space?
- White Coat Distance: In-house or Satellite Facility?
Simulation In Healthcare, Improving Patient Outcomes

Question # 7

What are the current trends in simulation?
- Planning
- Design
- Operations
- Funding

Simulation In Healthcare, Improving Patient Outcomes

Question # 6

Are there best practice models?
- Are site visits necessary?
- How is site visit selection best done?
Simulation In Healthcare, Improving Patient Outcomes

Question # 5
What level of fidelity?
Benefits and cost analysis of high fidelity?

Question # 4
What will it cost?
Budget for design, construction and equipment
Annual operating cost
Who is paying: first cost and operational costs?
What are the fundraising parameters?
Question # 3
When scope and budget don’t align, how do you prioritize?

Question # 2
What would you do differently?
Simulation In Healthcare, Improving Patient Outcomes

Question # 1
What are the politics?